Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Microbiol ; 291: 110015, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340554

RESUMO

A total of 10,890 bacterial isolates of Streptococcus dysgalactiae, Streptococcus uberis, Staphylococcus aureus and Escherichia coli isolated as etiological agents from dairy cows with mastitis by 29 veterinary laboratories across North America between 2011 and 2022 were tested for in vitro antimicrobial susceptibility by broth microdilution to ampicillin, cefoperazone, ceftiofur, cephalothin, erythromycin, oxacillin, penicillin-novobiocin and pirlimycin according to CLSI standards. Using available clinical breakpoints, antimicrobial resistance among S. dysgalactiae (n = 2406) was low for penicillin-novobiocin (0% resistance), ceftiofur (0.1%), erythromycin (3.2%) and pirlimycin (4.6%). Among S. uberis (n = 2398), resistance was low for ampicillin (0%) and ceftiofur (0.2%) and moderate for erythromycin (11.9%) and pirlimycin (18.4%). For S. aureus (n = 3194), resistance was low for penicillin-novobiocin (0%), ceftiofur (0.1%), oxacillin (0.2%), erythromycin (0.7%), cefoperazone (1.2%) and pirlimycin (2.8%). For E. coli (n = 2892), resistance was low for ceftiofur (2.8%) and cefoperazone (3.4%) and moderate for ampicillin (9.2%). Overall, the results indicate that mastitis pathogens in the United States and Canada have not shown any substantial changes in the in vitro susceptibility to antimicrobial drugs over the 12 years of the study, or among that of the proceeding survey from 2002-2010. The data support the conclusion that resistance to common antimicrobial drugs among mastitis pathogens, even to drugs that have been used in dairies for mastitis management for many years, continues to remain low.


Assuntos
Anti-Infecciosos , Doenças dos Bovinos , Cefalosporinas , Mastite Bovina , Feminino , Bovinos , Animais , Staphylococcus aureus , Escherichia coli , Cefoperazona , Novobiocina , Testes de Sensibilidade Microbiana/veterinária , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , América do Norte , Eritromicina , Ampicilina , Oxacilina , Mastite Bovina/epidemiologia , Mastite Bovina/microbiologia
4.
J Vet Pharmacol Ther ; 44(2): 207-214, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32112438

RESUMO

The emergence of antimicrobial resistance in human and veterinary bacterial pathogens has led to concerns regarding the use of antimicrobials in veterinary medicine. Consequently, regulatory agencies have developed procedures for assessing the risk associated with the use of a specific antimicrobial as part of the drug approval process. Due consideration for the importance (priority categorization) of the antimicrobial to human medicine is part of this risk assessment process. Additionally, nongovernmental organizations have developed antimicrobial categorization schemes to protect the use and effectiveness of these medicines. However, the goals and methods of the various categorization schemes vary, resulting in final categorizations that are different. Although harmonizing these schemes would bring clarity to antimicrobial resistance discussions and policy, it has the disadvantage of not accounting for regional antimicrobial resistance and use, potentially removing effective medicines from clinical use in situations where they are wholly appropriate. Antimicrobials should be classified in a One Health manner, where both physician and veterinarian share the responsibility for antimicrobial use. The purpose of this article is to summarize current antimicrobial categorization schemes using illustrative examples to highlight differences and provide perspectives on the impact of the current schemes and future directions.


Assuntos
Anti-Infecciosos , Medicina Veterinária , Animais , Antibacterianos/uso terapêutico , Bactérias , Medição de Risco
5.
BMC Microbiol ; 20(1): 250, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32787780

RESUMO

BACKGROUND: Mannheimia haemolytica strains isolated from North American cattle have been classified into two genotypes (1 and 2). Although members of both genotypes have been isolated from the upper and lower respiratory tracts of cattle with or without bovine respiratory disease (BRD), genotype 2 strains are much more frequently isolated from diseased lungs than genotype 1 strains. The mechanisms behind the increased association of genotype 2 M. haemolytica with BRD are not fully understood. To address that, and to search for interventions against genotype 2 M. haemolytica, complete, closed chromosome assemblies for 35 genotype 1 and 34 genotype 2 strains were generated and compared. Searches were conducted for the pan genome, core genes shared between the genotypes, and for genes specific to either genotype. Additionally, genes encoding outer membrane proteins (OMPs) specific to genotype 2 M. haemolytica were identified, and the diversity of their protein isoforms was characterized with predominantly unassembled, short-read genomic sequences for up to 1075 additional strains. RESULTS: The pan genome of the 69 sequenced M. haemolytica strains consisted of 3111 genes, of which 1880 comprised a shared core between the genotypes. A core of 112 and 179 genes or gene variants were specific to genotype 1 and 2, respectively. Seven genes encoding predicted OMPs; a peptidase S6, a ligand-gated channel, an autotransporter outer membrane beta-barrel domain-containing protein (AOMB-BD-CP), a porin, and three different trimeric autotransporter adhesins were specific to genotype 2 as their genotype 1 homologs were either pseudogenes, or not detected. The AOMB-BD-CP gene, however, appeared to be truncated across all examined genotype 2 strains and to likely encode dysfunctional protein. Homologous gene sequences from additional M. haemolytica strains confirmed the specificity of the remaining six genotype 2 OMP genes and revealed they encoded low isoform diversity at the population level. CONCLUSION: Genotype 2 M. haemolytica possess genes encoding conserved OMPs not found intact in more commensally prone genotype 1 strains. Some of the genotype 2 specific genes identified in this study are likely to have important biological roles in the pathogenicity of genotype 2 M. haemolytica, which is the primary bacterial cause of BRD.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Doenças dos Bovinos/microbiologia , Mannheimia haemolytica/genética , Infecções Respiratórias/veterinária , Sequenciamento Completo do Genoma/métodos , Animais , Bovinos , Cromossomos Bacterianos/genética , Genótipo , Mannheimia haemolytica/classificação , Mannheimia haemolytica/isolamento & purificação , Mutação , Filogenia
6.
J Antimicrob Chemother ; 74(4): 851-853, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30561662

RESUMO

OBJECTIVES: To identify and analyse the first ESBL gene from Mannheimia haemolytica. METHODS: Susceptibility testing was performed according to CLSI. Plasmids were extracted via alkaline lysis and transferred by electrotransformation. The sequence was determined by WGS and confirmed by Sanger sequencing. RESULTS: The M. haemolytica strain 48 showed high cephalosporin MICs. A single plasmid, designated pKKM48, with a size of 4323 bp, was isolated. Plasmid pKKM48 harboured a novel blaROB gene, tentatively designated blaROB-2, and was transferred to Pasteurella multocida B130 and to Escherichia coli JM107. PCR assays and susceptibility testing confirmed the presence and activity of the blaROB-2 gene in the P. multocida and in the E. coli recipient carrying plasmid pKKM48. The transformants had high MICs of all ß-lactam antibiotics. An ESBL phenotype was seen in the E. coli transformant when applying the CLSI double-disc confirmatory test for E. coli. The blaROB-2 gene from plasmid pKKM48 differed in three positions from blaROB-1, resulting in two amino acid exchanges and one additional amino acid in the deduced ß-lactamase protein. In addition to blaROB-2, pKKM48 harboured mob genes and showed high similarity to other plasmids from Pasteurellaceae. CONCLUSIONS: This study described the first ESBL gene in Pasteurellaceae, which may limit the therapeutic options for veterinarians. The transferability to Enterobacteriaceae with the functional activity of the gene in the new host underlines the possibility of the spread of this gene across species or genus boundaries.


Assuntos
Mapeamento Cromossômico , Mannheimia haemolytica/enzimologia , Mannheimia haemolytica/genética , Plasmídeos/análise , beta-Lactamases/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Eletroporação , Escherichia coli/genética , Testes de Sensibilidade Microbiana , Pasteurella multocida/genética , Transformação Bacteriana , Sequenciamento Completo do Genoma , beta-Lactamas
8.
Microbiol Spectr ; 6(2)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29600771

RESUMO

Antimicrobial susceptibility testing is an essential tool to the veterinarian for selecting the most appropriate agent for treatment of bacterial diseases of animals. The availability of well-defined methods that incorporate the necessary quality controls coupled to clinical outcome data is foundational in providing relevant test results for clinical decisions. Since 1993, the Clinical Laboratory and Standards Institute (CLSI) Subcommittee on Veterinary Antimicrobial Susceptibility Testing (VAST) has developed specific test methods and interpretive criteria for veterinary pathogens. This information has allowed for veterinarians to more effectively treat animal diseases thereby protecting both animal welfare and human food security. Moreover, the availability of standardized test methods for veterinary pathogens has allowed for the development of antimicrobial surveillance programs to detect the emergence of resistance among veterinary pathogens. Future work by the VAST and other groups will be critical to expanding the current test methods and interpretive criteria to more pathogen-antibacterial combinations, as well as, the incorporation of genomic information for routine antimicrobial susceptibility testing in the veterinary diagnostic laboratory.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/veterinária , Testes de Sensibilidade Microbiana/métodos , Testes de Sensibilidade Microbiana/veterinária , Doenças dos Animais/diagnóstico , Doenças dos Animais/tratamento farmacológico , Bem-Estar do Animal , Animais , Infecções Bacterianas/microbiologia , Combinação de Medicamentos , Farmacorresistência Bacteriana/efeitos dos fármacos , Abastecimento de Alimentos , Humanos , Testes de Sensibilidade Microbiana/normas , Testes de Sensibilidade Microbiana/tendências , Controle de Qualidade , Resultado do Tratamento , Medicina Veterinária
9.
J Antimicrob Chemother ; 73(6): 1460-1463, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29481657

RESUMO

Standardized definitions for MDR are currently not available in veterinary medicine despite numerous reports indicating that antimicrobial resistance may be increasing among clinically significant bacteria in livestock and companion animals. As such, assessments of MDR presented in veterinary scientific reports are inconsistent. Herein, we apply previously standardized definitions for MDR, XDR and pandrug resistance (PDR) used in human medicine to animal pathogens and veterinary antimicrobial agents in which MDR is defined as an isolate that is not susceptible to at least one agent in at least three antimicrobial classes, XDR is defined as an isolate that is not susceptible to at least one agent in all but one or two available classes and PDR is defined as an isolate that is not susceptible to all agents in all available classes. These definitions may be applied to antimicrobial agents used to treat bovine respiratory disease (BRD) caused by Mannheimia haemolytica, Pasteurella multocida and Histophilus somni and swine respiratory disease (SRD) caused by Actinobacillus pleuropneumoniae, P. multocida and Streptococcus suis, as well as antimicrobial agents used to treat canine skin and soft tissue infections (SSTIs) caused by Staphylococcus and Streptococcus species. Application of these definitions in veterinary medicine should be considered static, whereas the classification of a particular resistance phenotype as MDR, XDR or PDR could change over time as more veterinary-specific clinical breakpoints or antimicrobial classes and/or agents become available in the future.


Assuntos
Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla , Gado/microbiologia , Animais de Estimação/microbiologia , Infecções Respiratórias/veterinária , Terminologia como Assunto , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bactérias/patogenicidade , Bovinos , Doenças dos Bovinos/microbiologia , Mannheimia haemolytica/efeitos dos fármacos , Mannheimia haemolytica/patogenicidade , Testes de Sensibilidade Microbiana , Pasteurella multocida/efeitos dos fármacos , Pasteurella multocida/patogenicidade , Infecções Respiratórias/microbiologia , Staphylococcus/efeitos dos fármacos , Staphylococcus/patogenicidade , Suínos , Doenças dos Suínos/microbiologia
10.
J Vet Diagn Invest ; 29(2): 224-227, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28064562

RESUMO

Danofloxacin is a fluoroquinolone antibacterial agent approved for use in veterinary medicine to treat and control bovine respiratory disease caused by Mannheimia haemolytica or Pasteurella multocida. Susceptible minimal inhibitory concentration (MIC) breakpoint (≤0.25 µg/mL) and disk diffusion interpretive criteria (≥22 mm) values for danofloxacin against M. haemolytica and P. multocida were first approved by the Clinical and Laboratory Standards Institute (CLSI) in 2003. However, intermediate and resistant breakpoint values were not established because only susceptible wild-type populations were evident at the time of breakpoint approvals. Since then, nonsusceptible isolates of M. haemolytica and P. multocida have been identified. We report danofloxacin intermediate MIC breakpoint (0.5 µg/mL) and disk diffusion interpretive criteria (18-21 mm), as well as danofloxacin-resistant MIC breakpoint (≥1 µg/mL) and disk diffusion interpretive criteria (≤17 mm), based on scattergram plots of MIC values versus disk zone diameters and calculated error-bound rates using M. haemolytica and P. multocida isolates recovered from bovine respiratory disease in North America in 2004-2014. These newly established intermediate and resistant clinical breakpoint values have been endorsed by CLSI and can be used for interpreting results from antibacterial susceptibility testing of danofloxacin against M. haemolytica and P. multocida isolated from bovine respiratory disease.


Assuntos
Antibacterianos/farmacologia , Complexo Respiratório Bovino/tratamento farmacológico , Fluoroquinolonas/farmacologia , Mannheimia haemolytica/efeitos dos fármacos , Pasteurella multocida/efeitos dos fármacos , Animais , Complexo Respiratório Bovino/epidemiologia , Complexo Respiratório Bovino/microbiologia , Bovinos , Testes de Sensibilidade Microbiana/veterinária , América do Norte/epidemiologia
11.
BMC Genomics ; 17(1): 982, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27894259

RESUMO

BACKGROUND: Mannheimia haemolytica typically resides in cattle as a commensal member of the upper respiratory tract microbiome. However, some strains can invade their lungs and cause respiratory disease and death, including those with multi-drug resistance. A nucleotide polymorphism typing system was developed for M. haemolytica from the genome sequences of 1133 North American isolates, and used to identify genetic differences between isolates from the lungs and upper respiratory tract of cattle with and without clinical signs of respiratory disease. RESULTS: A total of 26,081 nucleotide polymorphisms were characterized after quality control filtering of 48,403 putative polymorphisms. Phylogenetic analyses of nucleotide polymorphism genotypes split M. haemolytica into two major genotypes (1 and 2) that each were further divided into multiple subtypes. Multiple polymorphisms were identified with alleles that tagged genotypes 1 or 2, and their respective subtypes. Only genotype 2 M. haemolytica associated with the lungs of diseased cattle and the sequence of a particular integrative and conjugative element (ICE). Additionally, isolates belonging to one subtype of genotype 2 (2b), had the majority of antibiotic resistance genes detected in this study, which were assorted into seven combinations that ranged from 1 to 12 resistance genes. CONCLUSIONS: Typing of diverse M. haemolytica by nucleotide polymorphism genotypes successfully identified associations with diseased cattle lungs, ICE sequence, and antibiotic resistance genes. Management of cattle by their carriage of M. haemolytica could be an effective intervention strategy to reduce the prevalence of respiratory disease and supplemental needs for antibiotic treatments in North American herds.


Assuntos
Conjugação Genética , Farmacorresistência Bacteriana , Genoma Bacteriano , Genômica , Mannheimia haemolytica/efeitos dos fármacos , Mannheimia haemolytica/fisiologia , Pneumonia Enzoótica dos Bezerros/microbiologia , Animais , Antibacterianos/farmacologia , Bovinos , Ligação Genética , Genômica/métodos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Mannheimia haemolytica/classificação , Polimorfismo de Nucleotídeo Único
12.
J Antimicrob Chemother ; 70(1): 93-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25239467

RESUMO

OBJECTIVES: The aim of this study was to identify and analyse the first integrative and conjugative element (ICE) from Mannheimia haemolytica, the major bacterial component of the bovine respiratory disease (BRD) complex. METHODS: The novel ICEMh1 was discovered in the whole-genome sequence of M. haemolytica 42548 by sequence analysis and comparative genomics. Transfer of ICEMh1 was confirmed by conjugation into Pasteurella multocida recipient cells. RESULTS: ICEMh1 has a size of 92,345 bp and harbours 107 genes. It integrates into a chromosomal tRNA(Leu) copy. Within two resistance gene regions of ∼ 7.4 and 3.3 kb, ICEMh1 harbours five genes, which confer resistance to streptomycin (strA and strB), kanamycin/neomycin (aphA1), tetracycline [tetR-tet(H)] and sulphonamides (sul2). ICEMh1 is related to the recently described ICEPmu1 and both ICEs seem to have evolved from a common ancestor. A region of ICEMh1 that is absent in ICEPmu1 was found in putative ICE regions of other M. haemolytica genomes, suggesting a recombination event between two ICEs. ICEMh1 transfers to P. multocida by conjugation, in which it also uses a tRNA(Leu) as the integration site. PCR assays and susceptibility testing confirmed the presence and activity of the ICEMh1-associated resistance genes in the P. multocida recipient. CONCLUSIONS: These findings showed that ICEs, with structurally variable resistance gene regions, are present in BRD-associated Pasteurellaceae, can easily spread across genus borders and enable the acquisition of multidrug resistance via a single horizontal gene transfer event. This poses a threat to efficient antimicrobial chemotherapy of BRD-associated bacterial pathogens.


Assuntos
Sequências Repetitivas Dispersas , Mannheimia haemolytica/genética , Conjugação Genética , DNA Bacteriano/química , DNA Bacteriano/genética , Farmacorresistência Bacteriana , Ordem dos Genes , Transferência Genética Horizontal , Genes Bacterianos , Genoma Bacteriano , Dados de Sequência Molecular , Pasteurella multocida , Análise de Sequência de DNA
13.
Genome Announc ; 1(3)2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23723408

RESUMO

Mannheimia haemolytica is the major bacterial component in the bovine respiratory disease complex, which accounts for considerable economic losses to the cattle industry worldwide. The complete genome sequence of M. haemolytica strain 42548 was determined. It has a size of 2.73 Mb and contains 2,888 genes, including several antibiotic resistance genes.

14.
Front Microbiol ; 4: 154, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23785362

RESUMO

Clinafloxacin is a broad-spectrum fluoroquinolone that was originally developed and subsequently abandoned in the late 1990s as a human health antibiotic for respiratory diseases. The purpose of this study was to investigate the activity of clinafloxacin as a possible treatment for respiratory disease in cattle and pigs. Minimum inhibitory concentration (MIC) values were determined using Clinical and Laboratory Standards Institute recommended procedures with recent strains from the Zoetis culture collection. Rodent efficacy was determined in CD-1 mice infected systemically or intranasally with bovine Mannheimia haemolytica or Pasteurella multocida, or swine Actinobacillus pleuropneumoniae, and administered clinafloxacin for determination of ED50 (efficacious dose-50%) values. The MIC90 values for clinafloxacin against bovine P. multocida, M. haemolytica, Histophilus somni, and M. bovis were 0.125, 0.5, 0.125, and 1 µg/ml, respectively, and the MIC90 values against swine P. multocida, A. pleuropneumoniae, S. suis, and M. hyopneumoniae were í0.03, í0.03, 0.125, and í0.008 µg/ml, respectively. Efficacy in mouse models showed average ED50 values of 0.019 mg/kg/dose in the bovine M. haemolytica systemic infection model, 0.55 mg/kg in the bovine P. multocida intranasal lung challenge model, 0.08 mg/kg/dose in the bovine P. multocida systemic infection model, and 0.7 mg/kg/dose in the swine A. pleuropneumoniae systemic infection model. Clinafloxacin shows good in vitro activity and efficacy in mouse models and may be a novel treatment alternative for the treatment of respiratory disease in cattle and pigs.

16.
J Antimicrob Chemother ; 67(1): 91-100, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22001176

RESUMO

BACKGROUND: Integrative and conjugative elements (ICEs) have not been detected in Pasteurella multocida. In this study the multiresistance ICEPmu1 from bovine P. multocida was analysed for its core genes and its ability to conjugatively transfer into strains of the same and different genera. METHODS: ICEPmu1 was identified during whole genome sequencing. Coding sequences were predicted by bioinformatic tools and manually curated using the annotation software ERGO. Conjugation into P. multocida, Mannheimia haemolytica and Escherichia coli recipients was performed by mating assays. The presence of ICEPmu1 and its circular intermediate in the recipient strains was confirmed by PCR and sequence analysis. Integration sites were sequenced. Susceptibility testing of the ICEPmu1-carrying recipients was conducted by broth microdilution. RESULTS: The 82 214 bp ICEPmu1 harbours 88 genes. The core genes of ICEPmu1, which are involved in excision/integration and conjugative transfer, resemble those found in a 66 641 bp ICE from Histophilus somni. ICEPmu1 integrates into a tRNA(Leu) and is flanked by 13 bp direct repeats. It is able to conjugatively transfer to P. multocida, M. haemolytica and E. coli, where it also uses a tRNA(Leu) for integration and produces closely related 13 bp direct repeats. PCR assays and susceptibility testing confirmed the presence and the functional activity of the ICEPmu1-associated resistance genes in the recipient strains. CONCLUSIONS: The observation that the multiresistance ICEPmu1 is present in a bovine P. multocida and can easily spread across strain and genus boundaries underlines the risk of a rapid dissemination of multiple resistance genes, which will distinctly decrease the therapeutic options.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla , Transferência Genética Horizontal , Pasteurella multocida/genética , Animais , Bovinos , Doenças dos Bovinos/microbiologia , DNA Bacteriano/química , DNA Bacteriano/genética , Escherichia coli/genética , Mannheimia haemolytica/genética , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/veterinária , Pasteurella multocida/efeitos dos fármacos , Pasteurella multocida/isolamento & purificação , Doenças Respiratórias/microbiologia , Doenças Respiratórias/veterinária , Análise de Sequência de DNA
17.
J Antimicrob Chemother ; 67(1): 84-90, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22001175

RESUMO

BACKGROUND: In recent years, multiresistant Pasteurella multocida isolates from bovine respiratory tract infections have been identified. These isolates have exhibited resistance to most classes of antimicrobial agents commonly used in veterinary medicine, the genetic basis of which, however, is largely unknown. METHODS: Genomic DNA of a representative P. multocida isolate was subjected to whole genome sequencing. Genes have been predicted by the YACOP program, compared with the SWISSProt/EMBL databases and manually curated using the annotation software ERGO. Susceptibility testing was performed by broth microdilution according to CLSI recommendations. RESULTS: The analysis of one representative P. multocida isolate identified an 82 kb integrative and conjugative element (ICE) integrated into the chromosomal DNA. This ICE, designated ICEPmu1, harboured 11 resistance genes, which confer resistance to streptomycin/spectinomycin (aadA25), streptomycin (strA and strB), gentamicin (aadB), kanamycin/neomycin (aphA1), tetracycline [tetR-tet(H)], chloramphenicol/florfenicol (floR), sulphonamides (sul2), tilmicosin/clindamycin [erm(42)] or tilmicosin/tulathromycin [msr(E)-mph(E)]. In addition, a complete bla(OXA-2) gene was detected, which, however, appeared to be functionally inactive in P. multocida. These resistance genes were organized in two regions of approximately 15.7 and 9.8 kb. Based on the sequences obtained, it is likely that plasmids, gene cassettes and insertion sequences have played a role in the development of the two resistance gene regions within this ICE. CONCLUSIONS: The observation that 12 resistance genes, organized in two resistance gene regions, represent part of an ICE in P. multocida underlines the risk of simultaneous acquisition of multiple resistance genes via a single horizontal gene transfer event.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla , Pasteurella multocida/genética , Animais , Bovinos , Doenças dos Bovinos/microbiologia , DNA Bacteriano/química , DNA Bacteriano/genética , Ordem dos Genes , Genoma Bacteriano , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/veterinária , Pasteurella multocida/efeitos dos fármacos , Pasteurella multocida/isolamento & purificação , Doenças Respiratórias/microbiologia , Doenças Respiratórias/veterinária , Análise de Sequência de DNA
18.
Antimicrob Agents Chemother ; 55(5): 2475-7, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21402855

RESUMO

The mechanism of macrolide-triamilide resistance in Pasteurella multocida has been unknown. During whole-genome sequencing of a multiresistant bovine P. multocida isolate, three new resistance genes, the rRNA methylase gene erm(42), the macrolide transporter gene msr(E), and the macrolide phosphotransferase gene mph(E), were detected. The three genes were PCR amplified, cloned into suitable plasmid vectors, and shown to confer either macrolide-lincosamide resistance [erm(42)] or macrolide-triamilide resistance [msr(E)-mph(E)] in macrolide-susceptible Escherichia coli and P. multocida hosts.


Assuntos
Antibacterianos/farmacologia , Lincosamidas/farmacologia , Macrolídeos/farmacologia , Pasteurella multocida/efeitos dos fármacos , Pasteurella multocida/genética , Doenças Respiratórias/microbiologia , Animais , Proteínas de Bactérias/genética , Bovinos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Pasteurella multocida/patogenicidade
19.
Vet Clin North Am Food Anim Pract ; 26(1): 79-88, table of contents, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20117544

RESUMO

The introduction of newer antimicrobial agents over the past two decades has dramatically improved the treatment of bovine respiratory disease (BRD). In the same time period, the implementation of standardized susceptibility test methods and BRD-specific interpretive criteria has substantially improved the ability to detect clinical resistance in the BRD pathogens. Although overall levels of resistance to the newer antimicrobial agents are generally low, recent data have indicated the potential for emergence and dissemination of a resistant clone in cattle. These data indicate the need for long-term surveillance of antimicrobial resistance in the BRD pathogens and a better understanding of the epidemiology of antimicrobial resistance in these pathogens.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Doenças dos Bovinos/microbiologia , Farmacorresistência Bacteriana , Doenças Respiratórias/veterinária , Animais , Bovinos , Testes de Sensibilidade Microbiana , Doenças Respiratórias/microbiologia
20.
Vet Ther ; 9(3): 212-22, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19003782

RESUMO

The purpose of this study was to determine the activities of two antibacterial agents used in the treatment of bovine respiratory infections-tulathromycin, a macrolide, and ceftiofur, a third-generation cephalosporin-alone, in combination with each other, and in combination with each of seven additional antibiotics (tilmicosin, florfenicol, enrofloxacin, danofloxacin, ampicillin, tetracycline, and penicillin G) against bovine Pasteurella multocida (n = 60) and Mannheimia haemolytica (n = 10) isolates for determination of synergy, antagonism, or indifference. Of 458 organism-drug combinations, 160 combinations of tulathromycin and 209 combinations of ceftiofur with eight antimicrobial drugs were indifferent. One combination was antagonistic (ceftiofur + florfenicol against one isolate of P. multocida). Time-kill studies showed loss of cidality for ceftiofur when combined with florfenicol at 1x the minimal inhibitory concentration. Overall, the in vitro data demonstrated that tulathromycin and ceftiofur, in combination with each other or seven other antimicrobial agents, primarily produce an indifferent response with no occurrences of synergism and rare occurrences of antagonism.


Assuntos
Antibacterianos/farmacologia , Complexo Respiratório Bovino/tratamento farmacológico , Cefalosporinas/farmacologia , Dissacarídeos/farmacologia , Compostos Heterocíclicos/farmacologia , Mannheimia haemolytica/efeitos dos fármacos , Pasteurella multocida/efeitos dos fármacos , Animais , Bovinos , Cefalosporinas/antagonistas & inibidores , Dissacarídeos/antagonistas & inibidores , Relação Dose-Resposta a Droga , Interações Medicamentosas , Sinergismo Farmacológico , Quimioterapia Combinada , Compostos Heterocíclicos/antagonistas & inibidores , Testes de Sensibilidade Microbiana/veterinária , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...